Area of Parallelograms Answers

Question	Answer
1.	$40 \mathrm{~cm}^{2}$
2.	$135 \mathrm{~cm}^{2}$
3.	$240 \mathrm{~cm}^{2}$
4.	$96 \mathrm{~cm}^{2}$
5.	$52 \mathrm{~cm}^{2}$
6.	$126 \mathrm{~cm}^{2}$
7.	$540 \mathrm{~cm}^{2}$
8.	$325 \mathrm{~cm}^{2}$
9.	Explain why the area of a parallelogram is the length of the base multiplied by the height. Draw a diagram to help your explanation.
	Explanation and drawings show an understanding that if you cut off a rightangled triangle from one side of the parallelogram and place it on the other side, you would have a rectangle and the area would be length \times height.
10.	Lena and Trishna have each drawn a parallelogram. Lena's parallelogram has a base of 18 cm and height 9 cm . Trishna's parallelogram has a base of 12 cm and height 11 cm . Is Lena correct?
	Lena's parallelogram has an area of $162 \mathrm{~cm}^{2}$. Trishna's parallelogram has an area of $132 \mathrm{~cm}^{2}$. The difference between the areas of the two parallelograms is $30 \mathrm{~cm}^{2}$. This is greater than $25 \mathrm{~cm}^{2}$. Lena is correct.

